
*

DTIC
AD-A261 489 fl• ELECTEfl

C

Fault-Tolerant Key Distribution*
(Preliminary Version)

Michael Reiter
Kenneth Birman

Robbert van Renesse

TR 93-1325
January 1993

Appioved kn ;r-L ftiscs*

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This work was supported by the Office of Naval Research (ONR) under grant number
N00014-92-J-1866, and by grants from GTE, IBM and Siemens, Inc. Any opinions,
conclusions or recommendations expressed in this document are those of the authors
and do not necessarily reflect the views or decisions of the ONR.

93-04673



rNTIS CRAI

D1IC TAB 0
ufidjiou;'lced 0]

Distribution I

Availabtilt Codes

Fault-Tolerant Key Distribution* o

(Preliminary Version)

Michael Reiter Kenneth Birman Robbert van Renesse
reiterccs .cornell.edu kentcs.cornell.edu rvr~cs .cornell.edu

Department of Computer Science
Cornell University

Ithaca, New York 14853

January 4, 1993

Abstract

Many authentication or key distribution protocols have been proposed to distribute crypto-
graphic keys for secure communication in open networks. These protocols often employ trusted
authentication and time services whose corruption or failure could result in security breaches or
prevent correct principals from establishing secure communication. In this paper, we describe the
design and implementation of authentication and time services that securely and fault-tolerantly
support key distribution. By using replication only when necessary, and introducing novel repli-
cation techniques when it was necessary, we have constructed these services to be easily defensible
against malicious attack. Moreover, the transient unavailability of even a substantial number of
servers does not hinder key distribution between correct principals or expose protocols to intruder
attacks. We also describe how these services function as the foundation for a more comprehensive
security architecture that we have implemented for fault-tolerant systems.

1 Introduction

In open networks, an intruder can attempt to initiate spurious communication in two ways [VK83]:

it can try to initiate communication under a false identity, or it can replay a recording of a previous

initiation sequence. Many authentication or key distribution protocols have been proposed to protect

against these attacks (e.g., [NS78, DS81, OR87, SNS88]). These protocols allow principals (e.g.,

computers, users) initiating communication to verify each others' identities and the timeliness of the

interaction. Most also arrange for the involved principals to share a secret cryptographic key by

which subsequent communication can be protected, or to possess each others' public keys, by which

communication can be protected or a shared key can be negotiated.

"This work was supported by the Office of Naval Research (ONR) under grant number N00014-92-J-1866, and by
grants from GTE, IBM, and Siemens, Inc. Any opinions, conclusions or recommendations expressed in this document
are those of the authors and do not necessarily reflect the views or decisions of the ONR.

1



Authentication protocols typically employ a trusted service, commonly called ai aOthIC7twatIO1

service [NS78], to counter the first. type of attack. In shared key protocols, the authentication service

normally shares a key with each principal and uses these keys to distribute other shared keys by

which principals communicate. In public key protocols, the authentication service usually has a

well-known public key and uses the corresponding private key to certify the public keys of principals.

Public key authentication services are also called certification authorities [BAN89].

A predominant technique to detect replay attacks in authentication protocols is to incorporate

into each protocol message the time at which the message was generated; the message is then valid

for a certain lifetime, beyond which it is considered a replay if received [DS81]. Timestamp-based

replay detection has been used in several systems (e.g., [SNS88, TA91]) and is often preferable to

challenge-response techniques [NS78], because it results in fewer protocol messages and less protocol

state. However, this approach requires that all participants maintain securely synchronized clocks.

In pract ce, clock synchronization is usually achieved via a time service, as in [GZ84, Mil89].

The dependence of authentication protocols on authentication and time services raises troubling

security and availability issues. First, the assurances provided by authentication protocols directly

rely on the security of these services, and thus these services must be protected. Second, the unavail-

ability of these services may prevent correct principals from establishing secure communication, or

even open security "holes" that could be exploited by an intruder. For instance, the unavailability of

a time service could result in clocks drifting far apart, thereby exposing principals to replay attacks.

To increase the likelihood of these services being available, they could be replicated. However.

in many environments this is dangerous, because replicating data or services makes them inherently

harder to protect [HT88, LABW91, Gon93]. That is, there is an apparent conflict between security

and availability when implementing core security services, as it is generally more difficult, or at least

requires more resources, to protect a replicated service than it is to protect a nonreplicated one.

We have developed techniques to reconcile this conflict. Specifically, we have constructed au-

thentication and time services, and ways to use them, that securely and fault-tolerantly support key

distribution. By using replication only when necessary, and introducing novel replication techniques

when it was necessary, we have constructed these services to be easily defensible against attack. And,

the transient unavailability of even a substantial number of servers does not hinder key distribution

between principals or expose protocols to intruder attacks. Client interactions with the services are

simple and efficient, and the services can be used with many different authentication protocols.

These services form the core of a more comprehensive security architecture that we have im-

plemented for fault-tolerant distributed systems. The architecture provides tools for building fault-

tolerant applications that remain correct despite malicious site corruptions and network attacks.

Although not tied to this system, our services are well-suited to support this architecture due to

their fault-tolerance features. After describing our services, we will discuss how they are used in this

larger security architecture.

2



2 The time service

The security risks of clock synchronization failures in authentication protocols are well-known [DSSI.

Gon92j, and the need for a secure time service has been recognized in several systems (e.g., [Mi189,

BM90]). However, the case for a highly available time service is not as clear. It is true that an

extended period of unavailability might cause principals to have increasingly disparate views of

real time. But, this in itself need not result in security weaknesses or inhibit communication too

quickly. In evidence of this, the algorithm we propose by which clients estimate real time allows

key distribution to proceed securely even during a lengthy unavailability of the time service. This

has allowed us to explicitly not replicate the time service so that it will be easier to protect. and to

achieve resilience to a time service unavailability through the client algorithm for estimating time.

2.1 The algorithm

Clients interact with the time service by the simple RPC-style protocol shown in figure 1. We assume

that the time server possesses a private key KT whose corresponding public key is well-known. (There

is a similar shared-key protocol.) At regular intervals, a client queries the time service with a nonce

identifier N [NS78], a new, unpredictable value. The time server immediately replies with { N, T) K,

i.e., its current time value T and the nonce, both signed with KT. The client considers the reply

valid if it contains N and can be verified with the public key of the time service.

Figure 1: Protocol by which C interacts with time service T.

C--T: N

T--C: {N,T}KT

The method by which a client uses this reply assumes that the client has access to a local

hardware clock H that measures the length t - t' of a real time interval [t', t] with an error of at most

p(t - t') where 0 < p < 1. That is,

(I - p) (t - t') _< H (t) - H (t') <5 (1 + p) (t - t').()

We assume that the time server's clock is perfectly synchronized to real time. (For all practical

purposes, this can be done by attaching a WWV receiver or a very accurate clock to the time

server's processor via a dedicated bus.) There are also assumed to be known, minimum real-time

delays min, and min 2 experienced, respectively, between when a client initiates a request to the

time service and when the time server receives that request, and between when the server reads its

local clock value and the reply is verified as authentic at the client. (In our implementation, min 2 is

substantially longer than mini, because it includes the delays for signing and verifying the response.)

3



It is not difficult to prove that immediately after a client receives and verifies a response from

the time service, it can characterize the current real time i by:

SE [T + min2 , T + r/(1 - p) - mini], (2)

where T is the tmestamp in the reply and r is the round trip time measured by the client, beginning

when it sent the request and ending after it verified the reply. By combining (1) and (2), the client

can characterize any later time t•> i by:

t E [L(t), U(t)], (3)

where

L(t) = (H(t)- H(i))/(1 + p) + T + min2

and

U(t) = (H(t) - H())(1- p) + T + r/(1 - p) - mini.

To estimate the time, the client uses either L(t) or U(t), depending on which is more conservative.

In particular, it accepts an authentication protocol message as valid at time t only if the timestamp in

the message plus the message lifetime is greater than U(t). However, when timestamping a message

to allow others to detect a later replay of that message, it obtains the timestamp from L(t). The

benefit of this scheme is that it is fail-safe [SS75]: a message with lifetime A sent by a (correct)

client at time t will never be accepted by another client after time t + A.
Clients periodically resynchronize with the time service, in order to narrow the interval (3). A

successful resynchronization results in new values of H(i), r and T for the calculation of U(t) and

L(t). Resynchronization attempts can fail, however, when the round trip time r for the attempt

exceeds some timeout value. When this happens, the client continues to attempt to resynchronize
with the service at regular intervals, while maintaining the values of T, r and H(i) obtained in

the last successful resynchronization for the calculation of L(t) and U(t). Thus, if the time service

becomes unavailable, the interval (3) at each client will drift wider with time. If the time service is

unavailable for too long, eventually principals' values of U(t) will exceed their values of L(t) by the
protocol message lifetimes, and all messages will be perceived as expired immediately upon creation.

While this bounds the amount of time that the system can continue to operate without the time

service, calculations in our system indicate that this bound is not very tight: for most reasonable

system parameter settings this bound is several days, and can be made much larger through further

tuning. These calculations, and preliminary tests in our system, lead us to believe that the system,

if tuned correctly, should be able to operate without the time service for sufficiently long to restart

the time service, even if the restart requires operator intervention. More comprehensive testing of

this hypothesis is currently underway.

4



2.2 Comparison to alternative designs

We derived our algorithm from that presented in [Cri89] for implementling a time service. The

primary difference between ours and that in (CriB9] lies in how clients use the interval (2). In

the latter, the client uses the midpoint. of (2) as its estimate of the tinic at time t. as this choice

minimizes the maximum possible error, and the client estimates future times as an offset, equal to

the measured time since the last resynchronization, from this midpoint.' However. like any other

clock synchronization algorithm in which each client maintains a single clock value, this algorithm

is not fail-safe: e.g., if the midpoint of (2) were too low, then the client's future estimates of the

time would tend to be low, and thus expired messages may be incorrectly accept ed. We feel that our

approach, which is fail-safe, is better for our purposes.

A reasonable alternative to not veplicating our time service is to replicate it in such a way that

it would provide a correct service despite some server failures and corruptions. For instance, a client.

could use the robust averaging algorithm of [Mar9O] to obtain an interval of bounded inaccuracy

containing real time from a set of n time servers, provided that fewer than [71/3j servers are faulty or

corrupt. Nevertheless, such approaches place larger burdens on the administrator of the service than

does ours, because the administrator must protect multiple servers, instead o, only one, to ensure

the integrity of the service. Since the availability of the time service is not crucial. this burden and

the additional costs of replication are difficult to justify.

Numerous other approaches to clock synchronization have been proposed, but for brevity, we do

not discuss them all here. Unlike ours, however, most assume upper bounds on message transmission

times, and to our knowledge, none provide a fail-safe algorithm for estimating time in authentication

protocols. We thus believe that our approach is unique in providing this property under relatively

few assumptions.

3 The authentication service

Like those in [TA91, LABW91], our authentication service is of the public key variety, that produces

public key certificates for principals. Each certificate {PT,K A, 1 }KA contains the identifier P of

the principal, the public key K-1 of the principal, and the expiration time T of the certificate,

all signed by the private key KA of the authentication service. A principal uses these certificates

to map principal identifiers to public keys, by which those principals (who presumably possess the

corresponding private keys) can be authenticated: the details are discussed in [LABW91]. In general.

a principal can request the certificate for any principal from the authentication service.

The need for security in such an authentication service is obvious: as the undisputed authority

on what public key belongs to what principal, the authentication service, if corrupted, could create

'This is a simplification of the algorithm in [Cri89]; the actual algorithm also takes measures to ensure that client

clocks are continuous and monotonic. These features, however, are unimportant for our purposes.

5



public key certificates arbitrarily and thus render secure communication impossible. It would also

appear that, unlike the time service, the authenticatiun service must be highly available, as its

unavailability would prevent, certificates from being refreshed when they expire. Other researchers

have also noted that both security and avaItbility, and thus the conflict between them, must be

dealt with in the construction of authentication services (e.g., [LABW91, Gon93[). We first describe

our method of balancing this tradeoff, and then compare it to other alternatives.

3.1 The algorithm

In [RB92], we describe a technique for securely replicating any service that can be modeled as a

state machine. The technique is similar to regular state machine replication [Sch90. in which a

client sends its request to all servers and accepts the response that it receives from a majority of

them. In this way, if a majority of the servers is correct, then the response obtained by the client

is correct. The approach in [RB92] provides similar guarantees but differs by freeing the client from

authenticating the responses of all servers. Instead, the client is required to possess only one public

key for the service and to authenticate only one response, just as if the service were not replicated.

We have constructed our authentication service using this technique. In its full generality, thle

system administrator can choose any threshold value k and create any number n > k of authentication

servers such that the service has the following properties:

1. Integrity: if fewer than k servers are corrupt, the contents of any properly signed certircate

produced by the service were endorsed by some correct server, and

2. Availability: if at least k servers are correct, the service produces properly signed certiticates.

As indicated above, a natural choice for the threshold value is k = [n/2 + 1j, so that a majority of

correct servers ensures both the availability and the integrity of the service.

Our technique employs a threshold signature scheme. Informally, a (k.n)-threshold signal ure

scheme is a method of generating a public key and n shares of the corresponding private key in such

a way that for any message m, each share can be used to produce a partial result from m. where any

k of these partial results can be combined into the private key signature for m. Moreover, knowledge

of k shares should be necessary to sign m, in the sense that without the private key it should be

computationally infeasible to

1. create the signature for m without k partial results for m,

2. compute a partial result for m without the corresponding share, or

3. compute a share or the private key without k other shares.

The replication technique does not rely on any particular threshold signature scheme. For our

authentication service, we have implemented the one in 1DF92), which is based upon RSA [RSA78].

6



Given a (k,n)-threshold signature scheme, we implement our authentication service as follows.

Let A = {AS 1,. .. ,A,,,} be the set of servers. Each authentication server AS,. when started, is

given the i-th share of the authentication service's private key KA, its own private key KAS,, tile

public key corresponding to the private key KAS, of each server AS,, and the public keys for all

principals. It is also given the public key of the time service to synchronize its clock as in section 2.

The protocol by which clients obtain certificates from the authentication service is illustrated

in figure 2. A client C requests a certificate for a principal P by sending the identifier for P and a

timestamp T to the servers. The purpose of T is to give the servers a common base time from which

to compute the expiration time of the certificate; 2 we discuss how C chooses T below. When each

server AS, receives the request, it extracts T and tests if T is no more than its current value of L(t). If

so, it produces its partial result pr,(P, T+ A, K l) for the contents (P, T+ A, Kp 1) of P's certificate,

where A is the predetermined lifetime of the certificate. AS2 then sends pr,(P, T + A, Kg') to the

other servers, signed uader its own private key. When it has authenticated k - 1 other partial results

from which it can create the certificate {P,T + A, Kp'}KA, it sends the certificate to C.

Figure 2: Protocol by which C obtains a certificate for P.

C--A: P,T

(Vi) ASi -- A: {P,T + A,pr,(P,T + A, Kp1)}jKs,

(Vi) AS, - C: {P,T+A,K,1'}K

Because each AS, produces a partial result only if T is no more than its value of L(l), where t is

the time at which it receives the request, any certificate produced for this request has an expiration

timestamp of at most t + A (assuming fewer than k corrupt servers). A client accepts a certificate

at some time t only if the certificate expiration time is greater than the client's value of U(t), which

ensures that the certificate expiration time has not been reached.

To obtain certificates of a maximum effective lifetime, a client should choose T to be close to

(but less than) what it anticipates will be the correct servers' values of L(t) when the request is

received. In practice, it works well to have a client, when sending a request at time t, to set T to

its own value of L(t) minus a small offset 6 > 0, and to increase 6 on subsequent requests if prior

attempts to obtain a certificate failed. Because an unavailability of the time service will generally

cause clients' values of L(t) to drift from those of the servers, during a lengthy unavailability a client

may need to set 6 to several seconds to obtain a certificate, at the cost of reducing the effective

lifetime of the certificate by that amount. However, since certificate lifetimes are typically at least

several minutes, this would normally reduce the effective lifetime by only a small fraction.
21n a prior version of this protocol, each server used its value of L(t) when the request was received as th- hp.g•e tt

compute the expiration time. This version was more sensitive to clock drifts and variances in request delivery times.

7



Figure 3: Design alternatives for a fault-tolerant public key authentication service.

(usually A AJ A)\
offline)

CA CDCi Clitnt ASi Client A 1 ~~ 4 Cin

ý AS
CDC, AS,,

(a) Offline certification author- (b) State machine replication (c) Transparent state machine
ity (CA) [TA91, LABW91]. CA [Sch9O]. Client authenticates replication [RB92]. Client
deposits long-lived certificates certificate from each server and authenticates single certificate
in an online, replicated certifi- accepts key, if any, that occurs that could have been created
cate distribution center (CDC). in a majority of certificates. only by a majority of servers.

3.2 Comparison to alternative designs

As previously mentioned, we are not the first to notice that the conflict between security and availabil-

ity is evident in the construction of authentication services. In [Gon93I, Gong proposed a method for

dealing with this tradeoff in shared key authentication services such as Kerberos [SNS88]. Lampson.

et.al., [LABW91] described a different solution that is appropriate for a public key authentication

service similar to ours, which they call a certification authority.

In the latter solution, which is also implemented in SPX [TA91], the certification authority is

usually offline, where it can be more easily protected by physical means (figure 3a). So its limited

availability is not problematic, it produces long-lived certificates that are stored in an online certificate

distribution center (CDC), which can be replicated for high availability [TA91]. Certificates are

obtained only from CDC replicas, so if necessary, a certificate can be revoked by deleting it from all

replicas. Thus, a client accepts a certificate only if both the highly secure certification authority and

a CDC replica endorse it. The disadvantage of this scheme, noted by Lampson, et.al., is that the

corruption of a CDC replica could delay the revocation of a certificate.

This problem could be addressed by using the technique of [RB92} to securely replicate the CDC.

However, our approach of securely replicating the authentication service itself (figure 3c) addresses

this problem more directly. Since the authentication service is on;.ne, it can refresh certificates

frequently and create them with short lifetimes. Thus, the window of vulnerability between the

disclosure of a principal's private key and the expiration of the principal's certificates can be greatly

shortened, making revocation less crucial. Also, the service is both highly available and defensible,

as it provides a correct service despite a minority of server failures and corruptions.

8



Our technique also has advantages over state machine replication [Sch90] (figure 3b) of the

authentication service (or the CDC of [TA91, LABW91]). First, our approach requires less state at

the client: the client needs only a single public key for the service, and need not maintain secure

channels to the servers or retain any other replies but the first properly signed one. The last of

these is especially beneficial if a principal obtains and forwards its own certificate to its partners

in cryptographic protocols, as in the "push" technique described in [LABW91]. If the service were

implemented using state machine replication, the principal would need to collect and forward a

number of certificates equal to the size of a majority of the servers. Second, our technique requires

the client to authenticate less communication, as the client can ignore all replies after the first

properly signed one. Third, in our approach the configuration of the authentication service is largely

transparent to clients, and so servers can be added or removed more easily.

There is, however, at least one disadvantage of our scheme with respect to the others mentioned

here: due to the round of server communication, a client is likely to wait longer for a response in

our scheme. As will be illustrated in section 4, though, in many situations communication with the

authentication service can be performed in the background, off the critical path of any other protocol

or computation, and in advance of any actual need for a certificate. (The certificate so obtained is

then cached until the need for it arises.)

4 Utilization in a security architecture for fault-tolerant systems

As mentioned in section 1, our authentication and time services have been implemented as part of a

more comprehensive security architecture for fault-tolerant systems [RBG92]. The architecture was

developed in an effort to integrate security into Isis, a system for building fault-tolerant applications

[BJ87, BSS91], although in principle it could be applied in other group-oriented systems such as V

[CZ85] and Amoeba [KT91]. In this section, we briefly outline the architecture as it was designed and

implemented for Isis,3 and then focus on the roles played by the authentication and time services.

The basic abstraction provided by Isis is the process group, which is a collection of processes

with an associated group address. Groups may overlap arbitrarily, and processes may create and

join groups at any time. Processes communicate primarily by group multicast, i.e., by multicasting

a message to the entire membership of a group of which it is a member. Isis further supports the

model of virtual synchrony, so that message deliveries and notification of group membership changes

(i.e., changes to the group view) appear in the same order at all group members.

The security architecture makes the Isis programming model robust against malicious attack,

while leaving the model itself unchanged. First, during group joins, the group and the joining

process are mutually authenticated to one another. Second, a group member must explicitly grant
3More precisely, the security architecture was implemented as part of a new Isis system, also called Horus. Those

familiar with earlier versions of Isis will notice that the new system architecture is very different from the previous.

9



each group join before the join is allowed to proceed. Third, the integrity of these mechanisnis and

the Isis abstractions, as well as the authenticity (and secrecy, if desired) of group communication, are

guaranteed within each group that has admitted no processes on corrupted sites (i.e., sites at which

an intruder has tamrnered with the hardware or operating system). These guarantees are achieved

with minimal changes to the process group interface. So, existing Isis tools and applications can

execute "securely" with little or no modification.

The security architecture as implemented in Isis is illustrated in figure 4. On each site, the core"

Isis functionality is implemented in a transport layer entity called MUTS and a session layer entity
called VSYNC, both of which reside in the operating system kernel [vRBC+92]. The purpose of MUTS

is to provide reliable, sequenced multicast among sites; VSYNC then implements the process group

and virtual synchrony abstractions over this service. The security architecture augments these layers

with protocols for distributing and using group keys. Each group has a pair of keys (the group keys)

that are shared by all sites in the group.4 One is a key to a symmetric cipher. This is used by

MUTS to establish authenticated connections within the group, which preserve the authenticity and

order of all internal group communication, and by VSYNC to distribute keys for the encryption of

user messages. The other is an RSA private key whose corresponding public key is incorporated into
the --roup address; this allows any process with the group address to authenticate group members.

Mc:e detail about the use of group keys and group addresses can be found in [RBG92].

Figure 4: The Isis security architecture.

Security Services User Address Space

Group Key User ProcessesAuthentication Time Service Tccess
Service Service Sevc ACcess

Key Distribution Groups

CD Encryption/
Time Keys Cert. Decryption
MU TS

Raw Authenticated
Connections Connections

4The security dangers of replication also apply to group keys. However, we view this replication as acceptable at

this level of the system for two reasons. First, the user has complete control over where the group keys are replicated.

Thus, he or she can make this determination based upon the particular application and environment. Second, the

disclosure of a group's keys corrupts only that group, not the entire system.

10



Group keys are created by a user-level operating system service called the Qroup kcy scrcictw. It

generates se t s of group keys in the background and caches them in vsYN.NC. (This is done to remove

the costly generation of an RSA key pair from the critical path of group creations.) When a local

process requests to create a group, VSYNC removes a set of group keys from its local cache and

associates them with the group. When VSYNC receives a join request for this group, it makes an

upcall to a local member, which either grants or denies the request. If granted, VSYNC coimmu•icates

the group keys to the joining site, using a Needham-Schroeder style protocol [NS78]. (See figure 5.)

Figure 5: Overview of the VSYNC group join protocol.

A B C D A (B C D)

Request Request
to join to join

Access Key 1 -

denied distribution -- - - -protocol • z- -

New view
installed ________________________

(a) A process on site A requests to join the (b) In this case, access is granted. The group
group containing (processes on) sites B, C, and keys are securely sent to A in message 1, in par-
D. A sends the request to B, which delivers the allel with a group synchronization protocol. Af-
request to its local member. Here, the member ter the keys are acknowledged (message 2), the
denies access, and B replies accordingly. new group view is installed.

It is this group join protocol that depends upon our authentication and time services. Each site

is booted with the public keys of these services and its own private key; the authentication service

possesses the corresponding public key. VSYNC periodically synchronizes with the time service and

obtains (and periodically refreshes) a certificate for its site from the authentication service. When a

local process asks to join a group, VSYNC forms a request including its current value of L(t), signs

the request with its site's private key, and prepends the certificate to the request before sending. A

site that receives this message can authenticate the requesting site by checking the authentication

service's signature on the certificate, extracting the public key from the certificate, and then checking

the signature on the request. Moreover, it can verify the timeliness of the message by comparing the

timest-imps in the certificate and the request to its current value of U(t), as described previously.

For brevity we omit further description of the protocol; the techniques are well-known [BAN89I.

11



There are two points worth emphasizing about our use of the aulhent icat ion and time s-rviceivs

First, neither service is on the critical path of the group join protocol. This is more notable in

the case of the authentication service, because in most systems, the authentication service (or.

in [TA91, LABW91I, the CDC) is on the critical path of authentication protocols. Second, the

transparency of replication in the authentication service simplifies the protocol. If, e. .. state machine

replication were used, each site would need to maintain certificates from a majority of servers to

prepend to its requests, and these certificates would need to be refreshed on a per-server basis. This

would also result in a substantial computational overhead for authenticating these certificates.

We leave discussion of other performance issues in the system to a companion paper IvRBR931.

Performance has, however, been a major goal of our activity. Several aspects of our architecture, such

as cryotographic message protection and the key exchange component of the group join protocol.

havr performajicc implications. There are also synchronization costs for some styles of group com-

munication. Nevertheless, we have reduced many of these costs using the same techniques used to

reduce the costs of interacting with the authentication and time services, namely moving expensive

operations off critical paths and caching information extensively. Overall, the performance impact of

our work is negligible for a large class of Isis applications, and modest even in worst-case situations.

5 Summary and discussion

In this paper we have presented the design and implementation of an authentication service and a

time service, with close attentira to the tradeoffs between availability and security experienced in

each. We have chosen to repiicute only the authentication service, because unlike the time service,

it needs to be replicated for availability. To compensate for this, it is built to tolerate a minority of

server corruptions and failures. This places larger burdens on both the attacker and the defender

than if the service were not replicated: the attacker must corrupt more servers to corrupt the service.

but the defender must defend more servers to ensure the integrity and availability of the service.

The time service is not replicated, so that it is easier to protect. Moreover, its unavailability

does not result in security breaches or hinder clients that continue to operate correctly. In fact. it

could be temporarily taken offline for further protection if the need arises. While techniques exist

for replicating time services so triat some number of server corruptions could be tolerated, we have

found that the additional costs of replication are difficult to justify.

Together these services form the core of a more comprehensive secvrity architecture for fault-

tolerant systems. In this role, they fault-tolerant!y support the secure distribution of cryptographic

keys that are used to protect communication within process groups. A beneficial feature of the

services is that they appear nonreplicated to clients. This has resulted in simple protocols and clean

algorithms for using the services, as well as mild storage and computation costs at clients.

We have fully implemented all of the mechanisms presented in this paper. There are, however,

12



issues that we have not yet fully addressed. For instance, these services in their current forni cannol

scale to very large systems, for both security and performance reasons. In a very large system,

the services may become overwhelmed, and there may not be a single authority trusted to protect

them. To alleviate this, services could be employed on a per-organization basis (as in a Kerberos

realm [SNS88]) or hierarchically (as in [LABW91]). An alternative deployment of the authentication

service would be to place each organization in charge of a different server.

Acknowledgements

We are grateful to Brad Glade for commenting on an early version of this paper, and especially for

suggesting the inclusion of the timestamp in the first message of the protocol for obtaining certificates

from the authentication service. We are also thankful to Fred Schneider and Tushar Chandra for

providing comments on earlier versions of this paper.

References

[BAN89] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Technical Report 39,
Digital Equipment Corporation Systems Research Center, February 1989.

[BJ87] K. P. Birman and T. A. Joseph. Reliable communication in the presence of failures.
ACM Transactions on Computing Systems, 5(1):47-76, February 1987.

[BM90] S. M. Bellovin and 4. Merritt. Limitations of the Kerberos authentication system.
Computer Communicatwns Review, 20(5):119-132. October 1990.

[BSS9i] K. P. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group
multicast. ACM Tranbactions on Computing Systems, 9(3):272-314, August 1991.

[Cri89] F. Cristian. Probabilistic clock synchronization. Distributed Computing, 3(3):146-158.
1989.

[CZ85] D. R. Cheriton and W. Zwaenepoel. Distributed process groups in .he V kernel. ACM
Transactions on Computing Systems, 3(2):77-107, May 1985.

[DF921 Y. Desmedt and Y. Frankel. Shared generation of authenticators and signatures. In
J. Feigenbaum, editor, Advances in Cryptology-CRYPTO '91 Proceedings, Lecture
Notes in Computer Science 576, pages 457-469. Springer-Verlag, 1992.

[DSS1] D. E. Denning and G. M. Sacco. Tin'estamps in key distribution protocols. Communi-
cations of the ACM, 24(8):533-536, August 1981.

[Gon92] L. Gong. A security risk of depending on synchronized clocks. ACM Opt rating Systems
Review, 26(1):49-53, January 1992.

[Gon93] L. Gong. Increasing availability and security of an authentication service. To appear in
IEEE Journal on Selected Areas in Communications, 1993.

13



[GZ84] R. Gusella and S. Zatti. TEMPO--A network time controller for a distributed Berkeley
UNIX system. In Proceedings of the USENIX Summer Corzfcrrnc. pages 78--85. June
1984.

[HT88] M. P. Herlihy and J. D. Tygar. How to make replicated data secure. In C. Pomerance.
editor, Advances in Cryptology-CRYPTO '87 Proceedings, Lecture Notes in Computer
Science 293, pages 379-391. Springer-Verlag, 1988.

[KT91g F. M. Kaashoek and A. S. Tanenbaum. Group communication in the Amoeba distributed
operating system. In Proceedings of the IEEE International Conference on Distributed
Computing Systems, pages 222-230, May 1991.

[LABW91I B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in distributed
systems: Theory and practice. In Proceedings of the ACM Symposium on Operating
Systems Principles, pages 165-182, October 1991.

[Mar90] K. Marzullo. Tolerating failures of continuous-valued sensors. ACM Transactions on
Computing Systems, 8(4):284-304, November 1990.

[Mil89] D. L. Mills. Network Time Protoco.' version 2) specification and implementation. RFC
1119, Network Working Group, September 1989.

[NS78] R. M. Needham and M. D. Schroeder. Using encryption for authentication in large
networks of computers. Communications of the ACM, 21(12):993-999, December 1978.

[OR87] D. Otway and 0. Rees. Efficient and timely mutual authentication. ACM Operating
Systems Review, 21(1):8-11, January 1987.

[RB92] M. K. Reiter and K. P. Birman. How to securely replicate services. Technical Report
92-1287, Department of Computer Science, Cornell University, June !992. Submitted to
ACM Transactions on Programming Languages and Systems.

[RBG92] M. K. Reiter, K. P. Birman, and L. Gong. Integrating security in a group oriented
distributed system. In Proceedings of the IEEE Symposium on Research in Security and
Privacy, pages 18-32, May 1992.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120-126, February
1978.

[Sch90] F. B. Schneider. Implementing fault-tolerant services using the state machine approach:
A tutorial. ACM Computing Surveys, 22(4):299-319, December 1990.

tSNS88I J. G. Steiner, C. Neuman, and J. I. Schiller. Kerberos: An authentication service for
open network systems. In Proceedings of the USENIX Winter Conference, pages 191-
202, February 1988.

[SS75] J. H. Saltzer and M. D. Schroeder. The protection of information in computer systems.
Proceedings of the IEEE, 63(9):1278-1308, September 1975.

14



[TA91] J. J. Tardo and K. Alagappan. SPX: Global authentication using public key certificatos.
In Proceedings of the IEEE Symposium on Rcsearch in Security and Prnvacy, pages
232-244, May 1991.

[VK83] V. L. Voydock and S. T. Kent. Security mechanisms in high-level network protocols.
ACM Computing Surveys, 15(2):135-171, June 1983.

[vRBC+92] R. van Renesse, K. Birman, R. Cooper, B. Glade, and P. Stephenson. Reliable mnultica~st
between microkernels. In Proceedings of the USENIX Microkcrnels and Other Krirn(I
Architectures Workshop, April 1992.

[vRBR93] R. van Renesse, K. Birman, and M. Reiter. Architecture and performance of the Horus
system. In preparation, 1993.

15


